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Abstract. People generate vast amounts of data that can be used
for analytics, data-driven decision-making, and forecasting. However, to
extract value from data, we need to apply specific methods of cleaning
and prepossessing it. In this paper, we observe the problem of geospa-
tial data de-duplication, propose and implement end-to-end solutions for
social-media-based data de-duplication. We apply advanced geospatial,
natural language processing, and classical machine learning methods for
our solution. Our tool shows high competitiveness in observed competi-
tion and can process a vast amount of data with limited computational
resources.

Keywords: De-duplication + Spatial data + End-to-end system -
Search - NLP

1 Introduction

The rise of social media platforms led to huge data flow generated by millions
of people. It resulted in numerous tasks to allow analyzing and using that infor-
mation. One of these tasks is data cleaning and de-duplication. In this work, we
observe the task of spatial data de-duplication, on the example of Foursquare
data provided within Kaggle competition.' The efficient and successful matching
of spatial points helps to make it easier to identify where new stores or businesses
would benefit people the most.

1.1 Problem Definition

Users can generate or complement information about places on the platforms.
Also, data can be scraped or imported from other online sources. As a result,
many places have duplicates described as exact locations. This work aims to

! Kaggle. Foursquare—Location Matching, https://www.kaggle.com/
competitions/foursquare-location-matching.
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improve place data quality by records de-duplication. In the real world, user-
generated data can have mistakes, typos, and missing values. Another problem
is that usually, we have a massive amount of records, which is impossible to
compare by the brute force one-to-all approach, as to O(n?) complexity in the
general formulation.

In this work, we present the solution to the de-duplication problem, that can
efficiently work with huge amounts of data with affordable processing time and
computational resources.

1.2 Related Work

Spatial data de-duplication problem is related to several tasks that involve
machine learning and other data processing techniques, especially in the domains
of search, NLP, and spatial data process.

Bohannon P. et al. considered the place duplicates problem, where a place
contains a name and a physical location. Due to the lack of additional infor-
mation about locations, the task was challenging. To resolve this problem, the
authors use both domain approaches—NLP and spatial techniques. Also, the
authors noted the difficulty of de-duplication for different place types, such as a
shopping mall or a park that contain a different number of places [2].

Other work observes building unified embeddings for geopoints for search
and de-duplication [9]. It also present the solution to make de-duplication of
data using NLP and geospatial analysis, and highly inspire our solution.

Another research takes the place graph from Facebook to improve place de-
duplication. In this data set, some fields contain additional place attributes like
names, addresses, images, etc. In addition to NLP and spatial processing tech-
niques, the authors used a case from the computer vision domain—person re-
identification [9].

The authors detect duplicates in two steps: (i) generating pairs using blocking
and (i1) classifying candidates by PlacERN. In turn, pair generation was divided
into two fazes: (i) a partitioning phase: generating all possible pairs in place sets;
(i) a filtering phase: computing a Jaro-Winkler similarity metric for each pair
with the defined threshold to avoid hurting recall [1].

Taking into account previous research results, we came out with our solution
to this specific task.

2 Methods

In this section, we observe the methodology used for building an end-to-end
spatial data de-duplicate system. We define the group of points corresponding
to one entity as a Point of Interest (POI). The task is to group independent
POIs and find duplicates among a massive set of 1M+ records.

We want our solution to be both accurate and efficient. So, we set time and
resource limits to be 9h of inference time and 12 GB of RAM.
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2.1 Exploratory Data Analysis

The initial step of any data science project is data observation. For our research,
we use the data from the Kaggle competition mentioned in the Introduction Sect.
1. Each entry of data includes attributes like the name, street address, coordi-
nates, country, state, and category. The dataset consists of 1,138,812 records
labeled 739,972 unique POIs, and 221 unique country labels. The final testing is
performed on the hidden test part, to avoid over-fitting and data leakage.

We noticed that missing features for different columns and their rate differs.
For example, we had columns that had almost always some value (latitude,
longitude, name, country), and some columns were in > 50% records empty
(URL, phone, zip). Rate of missing values per column presented in Fig. 1.

Rate of missing values per column

or N 75 9
phone [ 9.5
2o N 5 23
state
address [ 5483
city
categories [N .63
id

latitude O
longitude
point_of_interest 0
name |
country O
0 10 20 30 40 50 60 70 80
% of missing

column

Fig. 1. Rate of missing values per column for train part of dataset

Also, we had different numbers of records for different countries. That influ-
ences metrics, as different countries have their specifics, resulting in different
metrics scales for each. A number of records for each country have a different
influence on the final results (Fig. 2).

Also, there was a tendency for different places in the world to have different
densities of points. That also has a strong influence on the final prediction. For
example, we observe big cities have a high density of points, the same works
for coastlines or places of interest. Some anomalies were observed, such as in
India, where all points are concentrated in particular locations. At the same
time, Japan, and the UK, for example, have different situations, and points are
equally distributed on the whole country’s territory (Fig. 3).

The EDA presented in this section resulted in our specific approach to
problem-solving.

2.2 General System Overview

We have designed our system as a two-stage model (Fig. 4). The first level
was responsible for collecting the candidates to be a duplicate for each record.
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Fig. 2. Number of records per country (Top-20)
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The second one was responsible for classifying real duplicates given the set of
duplicates. The complete schema is presented in the following picture. During the
initial EDA, we found that 99.87% of all pairs are from one country. As a result,
we decided to process countries by groups (clusters). So we grouped countries
into the following clusters: (TR, GR), (US, CA, MX), (JP), and (others).

It allowed us to reduce memory usage and increase processing speed as the
indexes became smaller and didn’t significantly change performance.

2.3 Stage One. Candidates Selection

As for the first level, we used several techniques for candidate selection.

The initial approach used only location coordinates (longitude and latitude).
We used these features to create a BallTree index with haversine distance for
efficient search of location neighbors [3]. We exploited it in two ways: finding the
top-30 closest points to the given one and finding all points in the neighborhood
of 200m. These parameters were chosen based on an empirical study of our
specific dataset to cover a maximum number of true duplicates without numerous
candidates.

The second approach aimed to find the location neighbors with specific cat-
egories. We have trained a W2V model with existing categories [6]. We took all
categories for specific POI, collected them to list, and treated each as a token in
the sentence. Using such an approach, we could train embeddings of categories to
ensure that similar categories correspond to close embeddings. We concatenated
them with coordinate values to get the final vector to index. Finally, we used
Non-Metric Space Library (NMSLIB) to build an approximate nearest neighbors
(ANN) index and efficiently search for duplicate candidates [5].

The third approach was based on text semantic similarity. We used Sentence-
Transformers library as a framework to fine-tune custom multilingual models [7].
As a base model, we took paraphrase-multilingual-MiniL M-L12-v2 model as it
works with multiple languages, shows good performance, and returns a vector
of 384 dimensional, which is twice shorter than regular BERT or other similar
models. We built a training dataset from the pairs obtained from the first two
approaches. So we had pairs of places and their features. The label was binary,
one when two places are from one POI and zero otherwise. We fine-tuned the
model for the cosine similarity of the two texts. The text of place was con-
structed by joining all text features of place with the [SEP] token. So, the text
for a specific place was constructed with the following pattern: name [SEP]
address [SEP] city [SEP] url [SEP] country [SEP]. Finally, we could make
embeddings of texts of all places and index them using Non-Metric Space Library
(NMSLIB) and cosine similarity distance measurement.

The last approach was to extract candidates using complete duplicates by
phone number. We considered only numbers that occurred less than ten times
to omit hotlines of big chains like McDonald’s or IKEA.
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2.4 Stage 2. Classification Model and Post-processing

Having selected candidates, we proceed with building a model to classify if the
pair is a duplicate or not. For that, we decided to build an independent CatBoost
binary classification model [4]. We used a simple model with default parameters,
Log Loss, 25k iterations, and 0.01 learning rate. Also, we used a 10% test split
and best model selection based on metrics on the test. Results of our modeling
will be presented with more details in Sect. 3.

The most computationally expensive part was feature engineering. We had
an average of 81.07 candidates for each point in the dataset. We were processing
all points in batches of 500k candidates to avoid going out of RAM limits.

We built and used features presented in Table 1, used in our classifiers.

After the final classification, we collected the pairs that were classified as
positive pairs. We used two types of post-processing:

— If A is a pair of B, then B is a pair of A
— If A is a pair of B and B is a pair of C, then A is a pair of C

In that way, we extended the list of predicted pairs for each point, which
resulted in better metrics.

3 Results

We evaluated each stage of the solution independently. For the first level, we
used the recall metric, calculated with Eq. 1.

Number_of _real_duplicates

Recall = (1)

As a result of the first stage model presented in Sect. 2.3, we achieved a 0.9786
recall for the first stage. More detailed results can be observed in Table 2. We
could achieve such a recall only by combining different approaches to candidate
selection, which independently had worse results. However, each of them covered
their specific cases, which resulted in an excellent boost when combining them.
We found out that different countries have their particular characteristics. For
example, the average number of ground true candidates varies from 1.41 for CL
to 6.62 for ID. The same works for potential duplicates, ranging from 59.19 for
IN to 127.16 for SG. Taking this into account, we decided to build independent
second-stage models for each country presented in Table 2.

As for the second-level model, we used different metrics to evaluate the model
during its training. We used Precision, Recall, F1 and Accuracy metrics in clas-
sical binary classification task formulation. Figure 5 shows the example of the
performance of different models that were created for specific countries. Each
CatBoost model trained 10 thousand iterations with a learning rate of 0.01
based on log loss.

Due to each country’s specifics, we observe that metrics are varying for dif-
ferent countries.

Number_of _items_retrieved’
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Table 1. Features used for classification model

Feature names

Description

latitude_1,
tude_2

longitude_1, latitude_2, longi-

Coordinates of pair of points

category_encoding_1, category_encoding_2

Having a vector that represents the category,
we applied the clustering technique to group
all possible categories into 50 groups and used
the id of the group

category_match_score

Having vectors representing each point’s cat-
egory in a pair, we calculate the cosine simi-
larity between those vectors. In case we have
more than one category for one point, we take
a mean of category vectors as a vector repre-
sentation of category for the specific point

semantic_match_score

Having vectors of text obtained with the logic
presented in Sect. 2.3 for each point, we cal-
culate cosine similarity between them

feature_inclusive

Categorical features correspond to the
method or set of methods that returned this
pair from the first level. For example, it shows
that we got this pair from text similarity but
not from categorical and location similarity

latdiff, londiff, manhattan, euclidean, haver-
sine

Features that correspond to different methods
of spatial distance calculation

name_len_1,
address_levens,
address_len_2,
city_jaros,

name_levens, name._jaros,
name_len_2, name_nlevens,
address_jaros, address_len_1,

address_nlevens, city_levens,

city_len_1, city_len_2, city_nlevens,
state_levens, state_jaros, state_len_1,
state_len_2, state_nlevens, zip_levens,
zip_jaros, country_levens,  country_jaros,
url_levens, wurljaros, wurllen_1, wurlllen_2,
url_nlevens, phone_levens, phone_jaros,
categories_levens, categories_jaros, cat-
egories_len_1, categories_len_2, cate-

gories_nlevens

Features correspond to Levenshtein, Jaro-
Winkler char level distances between two
texts, along with the length of those fields for
name, state, city, phone, URL, categories, and
address fields of point pairs

The final metric used to evaluate end-to-end solution is loU. It shows how
accurate we find the duplicates related to both finding the candidates and clas-

sifying them. It is calculated with Eq. 2.

_ P({predicted_duplicates} U {true_duplicates})

ToU

P({true_duplicates})

: (2)

where P—is the power of the set function. As for a final prediction, we used
the standard 0.5 thresholds for final prediction, as it showed the best IoU final

result in our case.
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Table 2. Candidates retrieval results per country

Country |Recall Recall (only |Recall (only |Recall Recall (all|Average Average Number of
code (only neighbor- category (only text |together) |number of number of |points per

location) |hood) neighbor- similarity) ground true|candidates [country

hood) duplicates

MY 0.926 0.91 0.943 0.899 0.982 1.864 89.771 46,326
MX 0.951 0.915 0.962 0.895 0.987 1.882 70.584 21,396
BR 0.966 0.936 0.98 0.944 0.995 1.586 70.248 51,241
BE 0.954 0.931 0.964 0.897 0.991 1.921 72.38 25,821
CA 0.977 0.956 0.984 0.944 0.997 1.628 63.866 11,927
TH 0.919 0.903 0.925 0.848 0.983 2.08 102.401 58,808
FI 0.97 0.956 0.974 0.898 0.992 2.163 71.697 6634
ES 0.976 0.951 0.983 0.947 0.996 1.689 64.847 12,923
ID 0.751 0.73 0.757 0.824 0.912 6.62 93.234 110,796
1T 0.974 0.942 0.98 0.931 0.995 1.788 62.005 11,395
DE 0.966 0.937 0.976 0.916 0.994 1.912 65.105 17,813
SA 0.948 0.892 0.96 0.838 0.985 2.116 66.296 10,867
HK 0.925 0.916 0.932 0.861 0.981 1.821 104.116 5076
IN 0.983 0.94 0.988 0.93 0.996 1.653 59.191 4646
GR 0.974 0.935 0.98 0.907 0.991 1.918 63.777 5850
KR 0.933 0.903 0.951 0.862 0.986 1.993 80.709 19,087
SG 0.92 0.931 0.915 0.903 0.981 1.882 127.155 21,005
GB 0.954 0.931 0.96 0.912 0.992 1.777 67.804 25,544
RU 0.928 0.895 0.936 0.771 0.975 3.576 77.542 57,030
PH 0.858 0.856 0.908 0.861 0.972 2.42 103.496 22,180
FR 0.967 0.938 0.971 0.905 0.99 2.061 67.904 14,174
JP 0.955 0.947 0.959 0.921 0.993 1.861 95.703 70,032
CN 0.953 0.871 0.967 0.894 0.99 1.862 64.247 7445
TR 0.888 0.852 0.91 0.834 0.963 3.811 87.074 115,177
UA 0.96 0.924 0.975 0.86 0.992 2.034 71.425 9864
CL 0.97 0.96 0.983 0.958 0.996 1.411 76.547 7788
Cz 0.975 0.954 0.979 0.905 0.995 1.749 67.912 4920
AR 0.867 0.846 0.883 0.862 0.91 2.831 68.304 5255
Us 0.955 0.926 0.961 0.928 0.992 1.866 76.128 245,284
AU 0.956 0.937 0.968 0.928 0.994 1.648 68.044 10,449
NL 0.968 0.949 0.973 0.932 0.994 1.813 64.834 7713
others 0.96 0.923 0.969 0.91 0.99 1.988 66.703 94,335

The final metrics are presented in Table 3. The final aggregated metric for
our solution was 0.888, which was increased to 0.905 using post-processing logic
presented in Sect. 2.4.

As a result, we achieved the top 4% result among 1079 teams and got a silver
medal in the presented competition.

4 Discussion

We developed an end-to-end solution that can process a huge amount of data
and de-duplicate it using a limited amount of computational resources. Usually,
the solution is complex as it needs to use classical machine learning, geospatial
data processing techniques, and advanced solutions in NLP.
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Fig. 5. Validation metrics for sampled countries

We achieved outstanding results for our specific task, but this solution has
numerous limitations that we want to discuss. That can be an idea for further
research in presented the field.

1. Data specifics are important. We assume that such an approach can work
for similar datasets, but with severe limitations. We observed that in our
case, text and category similarity had great importance in duplicate findings.
However, it is important to mention that presented data is artificially gener-
ated, so in real life, the situation can be different. For further research, it is
important to generate more specific geospatial features like collocations and
neighborhood analysis [8]. That is also important to test the solution on other
related datasets.

2. In real life, there can be a bigger amount of data, that requires processing
using distributed computing. One of the lines for further research can be
adapting the presented solution for it similar to previous works [1].

3. Our solution presents a multistage modeling approach. It can result in error
accumulation. A possible further line of research is building a solid solution
to reduce this effect.
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Table 3. Validation metrics for end-to-end solution
Country |Recall|IoU |Number of true|Number of pre-|Number of sam-
code duplicates dicted duplicates |ples per country
MY 0.905 |0.883/1.937 1.582 46,326
MX 0.944 |0.927/1.884 1.754 21,396
BR 0.951 [0.932]1.59 1.5 51,241
BE 0.952 [0.935|1.955 1.795 25,821
CA 0.982 [0.978/1.639 1.597 11,927
TH 0.892 |0.859/2.089 1.833 58,808
FI 0.978 10.975/2.181 2.097 6634
ES 0.98 [0.975|1.713 1.619 12,923
ID 0.827 |0.764/6.723 3.683 110,796
IT 0.978 10.971]1.798 1.739 11,395
DE 0.973 10.963/1.93 1.848 17,813
SA 0.943 [0.93 |2.181 1.976 10,867
HK 0.949 10.947/1.92 1.722 5076
IN 0.992 0.989|1.677 1.636 4646
GR 0.981 [0.979/1.998 1.786 5850
KR 0.936 [0.919/2.039 1.841 19,087
SG 0.899 0.886|1.986 1.552 21,005
GB 0.966 |0.953|1.817 1.701 25,544
RU 0.892 |0.859|3.628 2.611 57,030
PH 0.905 |0.875|2.442 2.12 22,180
FR 0.961 [0.953|2.332 1.869 14,174
JP 0.943 10.922|1.866 1.764 70,032
CN 0.964 |0.958|1.92 1.812 7445
TR 0.877 10.826|3.821 2.706 115,177
UA 0.96 [0.954|2.102 1.928 9864
CL 0.982 (0.98 |1.414 1.37 7788
Cz 0.99 0.988|1.757 1.733 4920
AR 0.902 |0.901|2.856 1.634 5255
US 0.935 |0.907|1.872 1.733 169,958
AU 0.98 [0.977|1.672 1.601 10,449
NL 0.98 0.976/1.914 1.761 7713
Other 0.926 |0.8962.051 1.744 94,335
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